Drosophila Auditory Organ Genes and Genetic Hearing Defects
نویسندگان
چکیده
The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.
منابع مشابه
Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila.
Auditory neuropathy is a rare form of deafness characterized by an absent or abnormal auditory brainstem response with preservation of outer hair cell function. We have identified Diaphanous homolog 3 (DIAPH3) as the gene responsible for autosomal dominant nonsyndromic auditory neuropathy (AUNA1), which we previously mapped to chromosome 13q21-q24. Genotyping of additional family members narrow...
متن کاملMyosin VIIA, Important for Human Auditory Function, Is Necessary for Drosophila Auditory Organ Development
BACKGROUND Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] a...
متن کاملThe E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing...
متن کاملHearing regulates Drosophila aggression.
Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of ...
متن کاملA genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster.
Hearing is one of the last sensory modalities to be subjected to genetic analysis in Drosophila melanogaster. We describe a behavioral assay for auditory function involving courtship among groups of males triggered by the pulse component of the courtship song. In a mutagenesis screen for mutations that disrupt the auditory response, we have recovered 15 mutations that either reduce or abolish t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 150 شماره
صفحات -
تاریخ انتشار 2012